

D2.1.1 SPECIFICATION OF INGESTION

SERVICES

Advanced Search Services and Enhanced Technological

Solutions for the European Digital Library

Grant Agreement Number: 250527

Funding schema: Best Practice Network

Deliverable D2.1.1 WP2.1

Deliverable

V.1.0 – 13 May 2011

Document. ref.: ASSETS.D2.1.1.CNR.WP2.1.V1.0

ASSETS Specification of Ingestion services D2.1.1 v.1.0

Programme Name: ICT PSP

Project Number:250527

Project Title:...................................ASSETS

Partners:...Coordinator: ENG (IT)

Contractors:

Document Number:D2.1.1

Work-Package:...............................WP2.1

Deliverable Type:Deliverable

Contractual Date of Delivery:31-March-2011

Actual Date of Delivery:13-May-2011

Title of Document:Specification of Ingestion Services

Author(s):Stefano Baccianella, Andrea Esuli, Diego Marcheggiani,

Fabrizio Sebastiani (CNR);

..Sergiu Gordea (AIT)

Approval of this report

Summary of this report:see Executive Summary

History:...see Change History

Keyword List:ASSETS, Ingestion, Classification, Extraction, Cleaning,

Metadata

AvailabilityThis deliverable is:

X public

limited to ASSETS consortium distribution

limited to EU Programme distribution

restricted

internal

Change HistoryChange HistoryChange HistoryChange History
Version Date Status Author Description

0.1 02/05/11 Draft AE, SB, DM,

FS (CNR)

Initial draft

0.2 11/05/11 Draft AE, SB, DM,

FS (CNR)

Incorporating feedback from

reviewers

1.0 13/05/11 Final AE, SB, DM,

FS (CNR)

Final release

ASSETS Specification of Ingestion services D2.1.1 v.1.0

Table of Contents

1. INTRODUCTION ..2

 2. SCIENTIFIC BACKGROUND ...3

 2.1 METADATA CLEANING ... 3

 2.2 KNOWLEDGE EXTRACTION FROM METADATA RECORDS ... 4

 2.2.1 Knowledge extraction from metadata records based on conditional random fields 4

A formal definition of information extraction... 5

Conditional random fields ... 6

 2.3 AUTOMATIC CLASSIFICATION OF METADATA RECORDS .. 9

 2.3.1 TreeBoost.MH: A hierarchical version of AdaBoost.MH for multi-label TC 10

 2.3.2 Related work ... 12

2. INGESTION-RELATED ASSETS NEEDS AND CONSTRAINTS ...15

2.1 METADATA ENRICHMENT, HETEROGENEITY REDUCTION, INFORMATION EXTRACTION AND

CLASSIFICATION.. 15

3. INGESTION-RELATED ASSETS SERVICES ..18

3.1 THE INGESTION SERVICES .. 18

3.1.1 Metadata Cleaning ... 19

3.1.2 Knowledge Extraction ... 19

3.1.3 Metadata Classification .. 19

3.1.4 Ingestion Workflow.. 20

4. THE ASSETS DATA MODELS AND INTERFACES FOR INGESTION SERVICES.......................23

4.1 SYSTEM ARCHITECTURE OVERVIEW... 23

4.1.1 System Components .. 24

4.2 COMMON MODELS AND INTERFACES .. 25

4.2.1 ASSETS Data-Model Component.. 26

4.2.2 Core Data Model.. 26

4.2.3 ASSETS Common API and Common Server API Components 28

4.2.4 Common Server and Common Client ... 32

4.3 THE INGESTION MODELS AND INTERFACES ... 35

4.3.1 The Metadata Cleaning Service Models and Interfaces .. 35

4.3.2 Knowledge Extraction Models and Interfaces ... 40

4.3.3 Metadata Classification Models and Interfaces .. 43

4.3.4 Ingestion Workflow Models and Interfaces... 46

4.3.5 Post-Ingestion Processing .. 51

 APPENDIX 1 - ENRICHMENT SERVICES TRAINING DATA FORMAT......................................54

 ASSETS Specification of Ingestion services Page 1 D2.1.1 v.1.0

Executive Summary

This document contains a specification of the services to be developed within tasks “T2.1.1

Metadata cleaning”, “T2.1.2 Knowledge extraction”, and “T2.1.3 Metadata classification”, all

of them under the responsibility of CNR. For each activity, a scientific analysis and a detailed

specification of the API level is provided
1
.

1 Part of the content of this deliverable already appears in Deliverable 2.0.4 “The ASSET APIs”.

 ASSETS Specification of Ingestion services Page 2 D2.1.1 v.1.0

1. Introduction

The planned objective of WP2.1 is to implement a service for the enrichment of metadata

records that accounts (i) for the removal of various sources of noise from these records

(“metadata cleaning”), (ii) for the automatic identification and annotation, within metadata

records, of text strings that denote relevant entities (“knowledge extraction from metadata

records”), and (iii) for the automatic classification of the metadata records according to a set

of categories, possibly organized into a taxonomy, relevant for the domain (“metadata

classification”).

This task is made complex by the presence, within the ASSETS consortium and within

Europeana, of different content providers, concerned with different types of content, and

whose content is described by metadata records expressed in different languages. There is a

need thus to implement the above-mentioned services in a way that addresses this diversity

of content providers, content types, and languages, and in a way that allows possible new

content providers, with new content types described by metadata expressed in new

languages, to be also addressed with minimum additional effort.

As a consequence, the objective is to implement these services according to a supervised

learning methodology. Essentially, this means that a new content provider will be able to set

up a system for enriching its own metadata by providing to the system a “training” set of

enriched metadata records. The system would use these enriched metadata records as

indications, or examples, of what enriching metadata records from this content provider

means, and would then generate an “automatic enricher” of metadata records from this

content provider. Essentially, this mechanism allows to set up automatic metadata enrichers

for any type of content provider, any type of content, and any language, provided adequate

training sets of manually enriched metadata records are given as input.

This supervised learning metaphor underlies all three services tackled within WP2.1.

However, its algorithmic realization for the different services is different, since the individual

tasks are different in nature. For instance, T2.1.3 is a task that purports to enrich the

metadata record as a whole, by classifying it, and will thus be tackled via automatic text

classification technologies. Instead, T2.1.2 is a task that purports to enrich the metadata

record not by annotating the record in its entirety, but by annotating individual sequences

of words within the record, and will thus be tackled via automatic sequence learning

(“information extraction”) technologies.

The next section will give a concise scientific introduction to these tasks and to the

algorithms that we are going to use to solve them.

 ASSETS Specification of Ingestion services Page 3 D2.1.1 v.1.0

2. Scientific background

2.1 Metadata Cleaning

In the ASSETS proposal, T2.1.1 has to do with the removal of noise from metadata records,

where by “noise” we mean any kind of spurious text that may be present in the metadata

record. Spurious text may be present for a variety of reasons, ranging from erroneous typing

on the part of the person who performed the data entry, to erroneous conversion from a

source metadata format to a target metadata format. The original goal of T2.1.1 was to

tackle this problem via supervised learning, using “information extraction” technology (see

Section 2.2 for a definition) of a type similar to the one used in T2.1.2 “Knowledge

extraction from metadata records”. The rationale for using information extraction

technology was that noise in the metadata record field would consist of text strings properly

contained in the individual fields of the record, and that as such would lend themselves to

automatic annotation in the same way as other types of text strings properly contained in

the individual fields of the record, such as person and organization names, do lend

themselves to such automatic annotation (see T2.1.2). In the intention of the proposers this

approach to metadata cleaning based on supervised learning was meant to be a radically

novel piece of research, since we do not know of any other research work that applies

supervised learning, or information extraction, technology to (meta)data cleaning.

Unfortunately, the goals of T2.1.1 have turned out to be very difficult to achieve in practice,

since feedback received from the content providers has revealed that the amount of noise

in the metadata is much smaller than it had been foreseen at the time of writing the

proposal. This is especially problematic for an approach to this task based on supervised

learning, since a supervised learning approach would have required a sizeable amount of

noisy metadata records (to be used as training and test data) in which the content providers

had manually marked the noisy substrings and had clearly indicated what the corrective

action had been (e.g., deletion, replacement with another correct substring, etc.). It was in

this light that the partner responsible for T2.1.1 (CNR) provided all the content providers of

the ASSETS consortium with a set of guidelines on how to annotate metadata records that

be used as training and test data for T2.1.1, and requested each content provider to provide

a sizeable amount of such annotated metadata records. Unfortunately, no content provider

was really able to identify a sizeable enough amount of noisy metadata records (only one CP

provided 12 such records, and another CP provided 1), due to the fact that content

providers in the ASSETS consortium already enforce quality checking protocols that ensure

that the metadata records they produce are relatively noise-free. In other words, metadata

cleaning turned out to be a much less important problem than the proposers had thought

among the content providers in the ASSETS consortium.

As a consequence, most of the effort in T2.1.1 has been moved to T2.1.2 and T2.1.3, which

have required much more effort than it had initially been foreseen due to the complexity of

the Europeana infrastructure.

The design and implementation activities were planned to be executed in parallel with the

CPs' manual annotation activities; as a result, in the first year some effort has been devoted

to task T2.1.1 anyway. This has resulted in the definition of the API for the service and its

implementation at the interface level, as documented in Section 3 of this deliverable.

In the 2nd year of the project we will also try to refocus this task as an enrichment and

 ASSETS Specification of Ingestion services Page 4 D2.1.1 v.1.0

normalization task (via the use of dictionaries and authority files); this means, e.g.,

recognizing certain types of expressions of special significance (e.g., temporal expressions),

normalizing them and/or linking them to authority file entries. We are currently

investigating the existence of training and test data that are necessary to carry out these

tasks.

2.2 Knowledge Extraction from Metadata Records

2.2.1 Knowledge extraction from metadata records based on conditional random

fields

T.2.1.2 has to do with automatically annotating the text of which metadata records consist

of, by tagging specific substrings of this text according to a pre-specified set of tags that

denote concepts of interest in the domain the metadata records, and the corresponding

content, refer to. This task is usually referred to as information extraction (IE), or knowledge

extraction, in the literature [Be.Dov and Feldman, 2010, McCallum 2005, Sarawagi 2008]. In

other words, information extraction is the discipline concerned with the extraction of

natural language expressions from free text, where these expressions instantiate concepts

of interest in a given domain; if there are n different concepts of interest, information

extraction is a a bit like highlighting the text via n highlight markers of n different colours.

For instance, given a corpus of job announcements, one might want to extract from each

announcement the natural language expressions that describe the nature of the job, the

promised annual salary, the job location, etc. Another very popular instance of IE is

searching free text for named entities, i.e., names (or mentions) of persons, locations,

geopolitical organizations, and the like [Nadeau and Sekine, 2007]. Put yet another way, IE

may be seen as the activity of populating a structured information repository (such as a

relational database, where “job”, “annual salary”, “job location” are attributes) from an

unstructured information source such as a corpus of free text. As such, IE is important for

enriching digital libraries by making implicit semantics explicit, and is a prerequisite for

concept normalization, i.e., the linking of the mention of a concept to an entry of a

controlled vocabulary so that different linguistic manifestations of the same concept link to

the same controlled vocabulary entry.

There are two main approaches to designing an IE system. The former is the rule- based

approach, which consists in manually writing a set of rules which relate natural language

patterns with the concepts to be extracted from the text. This approach, while potentially

effective, is too costly, since it requires a lot of human effort for writing the rules, which

must be jointly written by a domain expert and a natural language engineer. In T2.1.2 we

follow the alternative approach, which is based on supervised machine learning. According

to this approach, a general-purpose learning software learns to relate natural language

patterns with the concepts to be instantiated, from a set of manually annotated free texts,

i.e., texts in which the instances of the concepts of interest have been marked by a domain

expert. The most important advantage of this approach is that the human effort required for

annotating the texts needed for training the system is much smaller than the one needed

for manually writing the extraction rules. After all, this is just a manifestation of the fact,

well-known in the cognitive sciences, that defining a concept intensionally (i.e., specifying a

set of rules for recognizing the instances of this concept – say, a set of rules for recognizing

red objects) is cognitively much harder for a human that defining the same concept

ostensively (i.e., pointing to a set of instances of the concept – say, pointing to a set of red

objects). A consequence of the machine learning approach is that a system for information

extraction may be easily updated to reflect new needs, such as e.g., the addition of a new

 ASSETS Specification of Ingestion services Page 5 D2.1.1 v.1.0

concept to the set of concepts to be identified, or the replacement of the concept set with a

completely different concept set. While the rule-based approach would require, in these

cases, the manual update of the extraction rules via the joint work of a knowledge engineer

and a domain expert, the machine learning approach just requires the provision of new

training examples annotated according to the new concepts of interest. In T2.1.2 this is

extremely advantageous, since the ASSETS consortium (and, a fortiori, the set of Europeana

content providers) harbours a variety of different content providers, working on different

types of content (and thus likely requiring the annotation of text according to different

concepts of interest) and describing this content via metadata records formulated in

different languages. In the rule-based approach this diversity would entail the need to tackle

each combination of <content provider + type of content + language> individually, by

manually writing rules for each such combination, while in the machine learning approach

each such combination may be tackled by simply providing appropriate training examples.

In the following sections we will first give a formal definition of information extraction, a

brief description of “conditional random fields”, the supervised learning algorithm that we

have adopted for T2.1.2. Conditional random fields have widely been studied, and are

widely used in information extraction applications, ranging from named entity recognition

[Zeng et al., 2009], to the analysis of medical reports [Esuli et al., 2011], to medical record

anonymisation [Szarvas et al, 2007], and even word hyphenation [Trogkanis and Elkan,

2010]. We will then give a detailed description of the evaluation protocol that we will follow

in order to ascertain how accurately the system performs on the metadata records of the

ASSETS and Europeana content providers.

A formal definition of information extraction

Let a text U = {t1 < s1 < ... < sn-1 < tn} consist of a sequence of tokens (i.e., word occurrences)

t1, ..., tn and separators (i.e., sequences of blanks and punctuation symbols) s1, ..., sn-1, where

”<” means “precedes in the text”. We use the term textual unit (or simply t-unit), with

variables u1, u2, ..., to denote either a token or a separator. Let C={c1, ..., cm} be a predefined

set of tags (aka labels, or classes), or tagset. Let A={11, ..., 1k, ..., m1, ..., mk} be an

annotation for U, where a segment ij for U is a pair (stij,etij) composed of a start token stij

U and an end token etij U such that stij ≤ etij (“≤” obviously means “either precedes in the

text or coincides with”). Here, the intended semantics is that, given segment ij=(stij ,etij)

A, all t-units between stij and etij, extremes included, are tagged with tag ci.

Given a universe of texts U and a universe of segments A, we define information

extraction (IE) as the task of estimating an unknown target function Φ : U X C→ A, that

defines how a text U U ought to be annotated (according to a tagset C) by an annotation

A A; the result Φ(Φ): U X C→ A of this estimation is called a tagger. Consistently with

most mathematical literature we use the caret symbol Φ() to indicate estimation. Note that

the notion of IE we have defined allows a given t-unit to be tagged by more than one tag,

and is thus dubbed multi-tag IE. The multi-tag nature of our definition essentially means

that, given tagset C={c1, ..., cm}, we can split our original problem into m independent

subproblems of estimating a target function Φi : U → Ai by means of a tagger Φ(Φi) : U →

Ai, for any i {1, ..., m}. Likewise, the annotations we will be concerned with from now on

will actually be c-annotations, i.e., sets of ci-segments of the form Ai ={i1, ..., ii}. Hereafter

we will often drop the prefix ci- when the context makes it implicit.

 ASSETS Specification of Ingestion services Page 6 D2.1.1 v.1.0

Conditional random fields

As a learning algorithm we have used conditional random fields} [Lafferty et al, 2001, Sutton

and McCallum, 2007]. Conditional random fields are graphical models that model a

conditional distribution p(y|x), in which the variable y=〈y1,..., ytΦ represents the labels to be

predicted, and the variable x=〈x1,..., xtΦ represents the observed knowledge. In our case y

are the tags to be assigned to the tokens and separators in the text, and x is the information

about these tokens and separators that we will input to the system.

Conditional random fields are often used in classification tasks in which the entities to be

classified have highly dependent features (sequence labeling, IE, etc.). Conditional random

fields differ from other graphical models, such as Hidden Markov Models}, that use a joint

probability distribution p(y,x) and therefore require to know the prior probability

distribution p(x). In conditional random fields the input variables x do not need to be

represented, thus avoiding the non trivial modeling of the prior probability distribution p(x),

and allowing the use of rich and dependent features of the input.

CRF++ is the implementation of linear-chain conditional random fields, that define the

conditional probability of y given x as:

P 〈 y∣x :θ 〉=
1

Z (x)
exp(∑

t=1

T

∑
k=1

K

θ k f k (y t−1,y t ;xt))

where Z(x) is a normalization factor, Φk is one of the K model parameter weights

corresponding to a feature function k(yt-1,yt ; xt).

Each feature function k describes the sequence x at position t with label yt observed with a

transition from label yt-1 to yt.

CRF++ allows to define feature functions k by using information about the token to be

labeled, and about the tokens around the token to be labeled; this is possible by defining

the size of the window of tokens to be considered around the one to be labeled. The

window can be composed by information belonging to tokens that precede the token to be

labeled or belonging to tokens that folllow the token to be labeled. Having a wide window is

important in tasks that require to identify long annotated sequence of tokens. For more

details about conditional random fields see [Sutton and McCallum, 2007].

A conditional random field learner needs each t-unit either in a training document or in a

test document to be represented in vectorial form. In this work we have used a set of

features consisting of the original token as it appears in the text, its part of speech, and the

relative lemma, plus information about capitalization, prefixes, suffixes and stemming. To

give the learner more robustness over typographical and orthographical errors, we use as

features the token lemma, the token prefixes (the first character of the token, the first two,

the first three, the first four) and suffixes (the last character of the token, the last two, the

last three, the last four), the token stem, and token capitalization information. With token

capitalization we identify 4 types of capitalization: “all capital”, indicating that all the letters

in the word are uppercased, “first letter capital”, indicating that just the first letter of the

word is uppercased and the rest of the letters are all lowercased, “all lower”, indicating that

none of the letters in the word are uppercased, and “mixed case”, indicating that there are

some uppercased letters and some lowercased letters. We also include as a feature the part

of speech of the token.

As the evaluation measure we use the recently proposed token & separator F1 model [Esuli

and Sebastiani, 2010]. According to this model, a tagger is evaluated according to the well-

 ASSETS Specification of Ingestion services Page 7 D2.1.1 v.1.0

known F1 measure on an event space consisting of all t-units in the text. In other words,

each t-unit uk (rather than each segment, as in the traditional “segmentation F-score”

model) counts as a true positive, true negative, false positive, or false negative for a given

tag ci, depending on whether uk belongs to ci or not in the predicted annotation and in the

true annotation. As argued in [8], this model has the advantage that it credits a system for

partial success, and that it penalizes both overtagging and undertagging.

As is well-known, F1 combines the contributions of precision (π) and recall (ρ), and is defined

as F 1=
2 πρ

π+ρ
=

2TP

2TP+FP+FN , where TP, FP, and FN stand for the numbers of true

positives, false positives, and false negatives, respectively. Note that F1 is undefined when

TP=FP=FN =0; in this case we take F1 to equal 1, since the tagger has correctly tagged all t-

units as negative.

We compute F1 across the entire test set, i.e., we generate a single contingency table by

putting together all t-units in the test set, irrespective of the text they belong to. We then

compute both microaveraged F1 (denoted by F1μ) and macroaveraged F1 (F1M). F1μ is

obtained by (i) computing the tag-specific values TPi, FPi and FNi, (ii) obtaining TP as the sum

of the TPi’s (same for FP and FN), and then (iii) applying the F 1=
2TP

2TP+FP+FN formula.

F1M is obtained by first computing the tag-specific F1 values and then averaging them

across the cj ’s.

An advantage of using F1 as the evaluation measure is that it is symmetric, i.e., its values do

not change if one switches the roles of the human annotator and the automatic tagger. This

means that F1 can also be used as a measure of agreement between any two

annotators/taggers, regardless of whether they are human or machine, since it does not

require one to specify who among the two is the “gold standard” against which the other

needs to be checked. For this reason, in the following section we will use F1 both (a) to

measure the agreement between our system and the human annotators, and (b) to

measure the agreement between the two human annotators. This will allow us to judge in a

direct way how far our system is from human performance.

References

Ben-Dov, M., Feldman, R.: Text Mining and Information Extraction. In Oded Maimon, Lior Rokach

(Eds.): Data Mining and Knowledge Discovery Handbook, 2nd ed. Springer, 2010, pp. 809-835

Esuli, A., Marcheggiani, D., Sebastiani, F.,: Information Extraction from Radiology Reports. Presented

at the 7th Italian Conference on Digital Libraries, Pisa, Italy, 2011

Esuli, A., Sebastiani, F.: Evaluating information extraction. In: Proceedings of the Conference on

Multilingual and Multimodal Information Access Evaluation (CLEF’10), Padova, IT (2010) 100–

111

Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting

and labeling sequence data. In: Proceedings of the 18th International Conference on Machine

Learning (ICML’01), Williamstown, US (2001) 282–289

Li, L., Zhou, R., Huang, D.: Two-phase biomedical named entity recognition using CRFs. Computational

Biology and Chemistry 33(4):334-338 (2009)

McCallum, A.: Information extraction: Distilling structured data from unstructured text. Queue 3(9)

(2005) 48–57

Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Linguisticae

Investigationes 30(1) (2007) 3—26

Sarawagi, S.: Information extraction. Foundations and Trends in Databases 1(3) (2008) 261--377

 ASSETS Specification of Ingestion services Page 8 D2.1.1 v.1.0

Sutton, C., McCallum, A.: An introduction to conditional random fields for relational learning. In

Getoor, L., Taskar, B., eds.: Introduction to Statistical Relational Learning. The MIT Press,

Cambridge, US (2007) 93–127

Szarvas, G., Farkas, R., and Busa-Fekete, R.: State-of-the-art anonymisation of medical data with an

iterative machine learning model/framework. Journal of the American Medical Informatics

Association, 14(5):574–580, 2007.

Trogkanis, N., Elkan, C.: Conditional Random Fields for Word Hyphenation. Proceedings of the 48th

Annual Meeting of the Association for Computational Linguistics, July 11-16, 2010, Uppsala,

Sweden, 2010, pp. 366-374.

Zeng, G., Zhang, C., Xiao, Bo., Lin, Z.: CRFs-Based Chinese Named Entity Recognition with Improved

Tag Set. Proceedings of the 2009 WRI World Congress on Computer Science and Information

Engineering, 2009, Los Angeles, US, 2009:519-522

2.3 Automatic Classification of Metadata Records

As part of their routine information management protocols, many organizations and

content providers classify their content (or the metadata that describe this content)

according to a set of categories (or “classification scheme”) that effectively describe the

domain this content is about. It is often the case that, unless the domain is trivial in nature,

this classification scheme has a hierarchical structure, since a non-hierarchical, flat structure

would be too clumsy to accommodate the many categories that describe this domain. We

will indeed assume that content providers do structure their content according to a

hierarchically shaped classification scheme. This assumption is non-restrictive, since a flat

classification scheme may also be seen as a hierarchical classification scheme consisting of

two levels only, the root (level 0) and all the categories (level 1) appended to the root as

children.

The field of supervised learning that tackles the classification of textual items (as metadata

records are) under hierarchically structured classification schemes is called hierarchical text

categorization (HTC). Notwithstanding the fact that most large-sized classification schemes

for text (e.g. the ACM Classification Scheme, the MESH thesaurus, the NASA thesaurus)

indeed have a hierarchical structure, the attention of text classification (TC) researchers has

mostly focused on algorithms for “flat” classification. These algorithms, once applied to a

hierarchical classification problem, are not capable of taking advantage of the information

inherent in the class hierarchy, and may thus be suboptimal, in terms of efficiency and/or

effectiveness. On the contrary, many researchers have argued that by leveraging on the

hierarchical structure of the classification scheme, heuristics of various kinds can be brought

to bear that make the classifier more efficient and/or more effective. This is the reason why,

for the purposes of T2.1.3, we will focus our attention on algorithms explicitly devised for

HTC.

An important intuition that underlies HTC algorithms is that, by viewing classification as the

identification of the paths that, starting from the root, funnel the document down to the

subtrees where it belongs (in “Pachinko machine” style), entire other subtrees can be

pruned from consideration. That is, when the classifier corresponding to an internal node

outputs a negative response, the classifiers corresponding to its descendant nodes need not

be invoked any more, thus reducing the computational cost of classifier invocation

exponentially [Chakrabarti et al. 1998; Koller and Sahami 1997]. A second important

intuition is that, by training a binary classifier for an internal node category on a well-

selected subset of training examples of local interest only, the resulting classifier may be

made more attuned to recognizing the subtle distinctions between documents belonging to

 ASSETS Specification of Ingestion services Page 9 D2.1.1 v.1.0

that node and those belonging to its sibling nodes. While this technique promises to bring

about more effective classifiers, it is also going to improve efficiency, since a smaller set of

examples is used in training, thereby making classifier learning speedier. Many of these

intuitions have been used in close association with several learning algorithms; the most

popular choices in this respect have been naïve Bayesian methods, neural networks, support

vector machines, and example-based classifiers.

In T2.1.3 we will use an HTC algorithm based on boosting technology, called TreeBoost.MH

[Esuli et al, 2008]; the reasons for this choice include the fact that TreeBoost.MH has proved

to be highly efficient and, above all, highly accurate in a number of applications we have

previously applied it to, including the classification of newswire reports [Esuli et al, 2008], of

medical discharge reports [Esuli et al, 2008], and of radiology reports [Baccianella et al,

2011]. TreeBoost.MH is a multi-label (ML) HTC algorithm that consists of a hierarchical

variant of AdaBoost.MH [Schapire and Singer, 2000], the most important member of the

family of boosting algorithms; here, multi-label (ML) means that a document can belong to

zero, one, or several categories at the same time. TreeBoost.MH embodies several intuitions

that had arisen before within HTC, e.g., the intuitions that both feature selection and the

selection of negative training examples should be performed “locally”, i.e. by paying

attention to the topology of the classification scheme. TreeBoost.MH also incorporates the

intuition that the weight distribution that boosting algorithms update at every boosting

round should likewise be updated “locally”. All these intuitions are embodied within

TreeBoost.MH in an elegant and simple way, i.e. by defining TreeBoost.MH as a recursive

algorithm that uses AdaBoost.MH as its base step, and that recurs over the tree structure.

In the next two sections we give a concise description of TreeBoost.MH.

2.3.1 TreeBoost.MH: A hierarchical version of AdaBoost.MH for multi-label TC

When discussing an HTC application it is always important to specify what the semantics of

the hierarchy is, i.e., to specify the semantic constraints that a supposedly perfect classifier

would enforce; which constraints are in place has important consequences on which

algorithms we might want to apply to this task, and, more importantly, on how we should

evaluate these algorithms. For instance, one should specify whether a document can in

principle belong to zero, one, or several categories (which is indeed our assumption within

T2.1.3), or whether it always belongs to one and only one category. No less importantly, one

should specify whether it is the case that

1. a document d that is a positive example of a category is also a positive example of all

its ancestor categories. We assume this to be the case.

2. a document d can in principle be a positive example of an internal node category and

at the same time not be a positive example of any of its descendant categories. We

assume this to be the case.

Assumption 2 is indeed useful for tackling datasets in which documents with these

characteristics do occur, while at the same time not preventing us to deal with datasets with

the opposite characteristics. A consequence of these two assumptions is that the set of the

positive training examples of a nonleaf category is a (possibly proper) superset of the union

of the sets of positive training examples of all its descendant categories.

TreeBoost.MH embodies several intuitions that had arisen before within HTC.

The first, fairly obvious intuition (which lies at the basis of practically all HTC algorithms

proposed in the literature) is that, in a hierarchical context, the classification of a document

is to be seen as a descent through the hierarchy, from the root to the (internal or leaf)

categories where the document is deemed to belong. In ML classification this means that

 ASSETS Specification of Ingestion services Page 10 D2.1.1 v.1.0

each non-root category has an associated binary classifier which acts as a “filter” that

prevents unsuitable documents to percolate to the descendants of the category. All test

documents that a classifier deems to belong to a category are passed as input to all the

binary classifiers corresponding to its children categories, while the documents that the

classifier deems not to belong to the category are “blocked” and analysed no further. Note

that it may well be the case that a document is deemed to belong to a category by its

corresponding classifier and is then rejected by all the binary classifiers corresponding to its

children categories; this is indeed consistent with assumption (2) above. In the end, each

document may thus reach zero, one, or several (leaf or internal node) categories, and is thus

classified as belonging to them.

The second intuition is that the training of a classifier should be performed “locally”, i.e. by

paying attention to the topology of the classification scheme. To see this, note that, during

classification, if the classifier for a category has performed reasonably well, the classifier for

the children categories will only (or mostly) be presented with documents that belong to the

subtree rooted in that category. As a result, the training of a classifier for a given category

should be performed by using, as negative training examples, the positive training examples

of its sibling categories, with the obvious exception of the documents that are also positive

training examples of the category itself. In particular, training documents that only belong to

categories other than those mentioned above need not be used. The rationale of this choice

is that the negative training examples thus selected are “quasi-positive” examples of the

category [Fagni and Sebastiani, 2010], i.e. are the negative examples that are closest to the

boundary between the positive and the negative region of the category (a notion akin to

that of “support vectors” in SVMs), and are thus the most informative negative examples

that can be used in training. This is beneficial also from the standpoint of (both training and

classification time) efficiency, since fewer training examples and fewer features are

involved.

The third intuition is similar, i.e. that feature selection should also be performed “locally”,

by paying attention to the topology of the classification scheme. As above, if the classifier

for the category has performed reasonably well, the classifiers for its children categories will

only (or mostly) be presented with documents that belong to the subtree rooted in the

category itself. As a consequence, for the classifiers corresponding to the children

categories, it is cost-effective to employ features that are useful in discriminating (only)

among themselves; features that discriminate among categories lying outside the subtree

rooted in the category are too general, and features that discriminate among the

subcategories of the children categories are too specific. This intuition, albeit in the slightly

different context of single-label classification, was first presented in [Koller and Sahami,

1997].

TreeBoost.MH also embodies the novel intuition that the weight distribution that boosting

algorithms update at every boosting round should likewise be updated “locally”. In fact, the

two previously discussed intuitions indicate that hierarchical ML classification is best

understood as consisting of several independent (flat) ML classification problems, one for

each internal node of the hierarchy. In a boosting context, this means that several

independent distributions, each one “local” to an internal node, should be generated and

updated by the process. In this way, the “difficulty” of a category will only matter relative to

the difficulty of its sibling categories. This intuition is of key importance in allowing

TreeBoost.MH to obtain exponential savings in the cost of training over AdaBoost.MH.

TreeBoost.MH incorporates these four intuitions by factoring the hierarchical ML

classification problem into several “flat” ML classification problems, one for every internal

node in the tree. TreeBoost.MH learns in a recursive fashion, generating a binary classifier

 ASSETS Specification of Ingestion services Page 11 D2.1.1 v.1.0

for each non-root category, by means of which hierarchical classification can be performed

in “Pachinko machine” style.

Learning in TreeBoost.MH proceeds by first identifying whether a leaf category has been

reached, in which case nothing is done, since the classifiers are generated only at internal

nodes. If an internal node has been reached, a ML feature selection process may (optionally)

be run to generate a reduced feature set on which the ML classifier for the node will

operate. This may be dubbed a “glocal” feature selection policy, since it takes an

intermediate stand between the well-known “global” policy (in which the same set of

features is selected for all the categories) and the “local” policy (in which a different set of

features is chosen for each different category). The glocal policy selects a different set of

features for each (maximal) set of sibling categories. We use information gain as the feature

selection function, and Forman’s [2004] round robin as a feature score globalization

method. After the reduced feature set has been identified, TreeBoost.MH calls upon

AdaBoost.MH to solve a ML (flat) classification problem for the set of sibling categories;

again, in order to implement the “quasi-positive” policy discussed above, the negative

training examples of a category are taken to be the set of the positive training examples of

its sibling categories minus the positive training examples of the category itself. Note that

this implements the view, discussed above, of several independent, “local” distributions

being generated and updated during the boosting process.

Finally, after the ML classifier for a maximal set of sibling categories has been generated, for

each such category a recursive call to TreeBoost.MH is issued that processes the subtree

rooted in the category in the same way. The final result is a hierarchical ML classifier in the

form of a tree of binary classifiers, one for each non-root node, each consisting of a

committee of decision stumps.

2.3.2 Related work

HTC was first tackled in Wiener et al. [1995], in the context of a TC system based on neural

networks and latent semantic indexing. The intuition that it could be useful to perform

feature selection locally by exploiting the topology of the tree is originally due to Koller and

Sahami [1997]. However, this work dealt with single-label text categorization, which means

that feature selection was performed ‘‘collectively’’, i.e., relative to the set of children of

each internal node; given that in T2.3.1 we are in an ML classification context, we instead do

it ‘‘individually’’, i.e., relative to each child of any internal node. The intuition that the

negative training examples for training the classifier for a given category could be limited to

the positive training examples of categories topologically close to it is due to Ng et al. [1997]

and Wiener et al. [1995]. The notion that, in an ML classification context, classifiers at

internal nodes act as ‘‘routers’’ informs much of the HTC literature, and is explicitly

discussed in Ruiz and Srinivasan [2002], which proposes a HTC system based on neural

networks.

Other works in hierarchical text categorization have focused on other specific aspects of the

learning task. For instance, the ‘‘shrinkage’’ method presented in McCallum et al. [1998] is

aimed at improving parameter estimation for data-sparse leaf categories in a single-label

HTC system based on a naive Bayesian method; the underlying intuitions are specific to

naive Bayesian methods, and do not easily carry over to other contexts. Incidentally, the

naive Bayesian approach seems to have been the most popular among HTC researchers,

since several other HTC models are hierarchical variations of naive Bayesian learning

algorithms [Chakrabarti et al. 1998; Gaussier et al. 2002; Toutanova et al. 2001; Vinokourov

and Girolami 2002]; SVMs have also recently gained popularity in this respect [Cai and

Hofmann 2004; Dumais and Chen 2000; Liu et al. 2005; Yang et al. 2003].

 ASSETS Specification of Ingestion services Page 12 D2.1.1 v.1.0

References

Baccianella, S., Esuli, A., & Sebastiani, F. (2011). Single-Label Classification of Radiology Reports under

the ACR Classification Scheme. Presented at the 7th Italian Research Conference on Digital

Libraries, Pisa.

Cai, L., & Hofmann, T. (2004). Hierarchical document categorization with support vector machines. In

Proceedings of the 13th ACM International Conference on Information and Knowledge

Management (CIKM’04), pp. 78–87.

Chakrabarti, S., Dom, B. E., Agrawal, R., & Raghavan, P. (1998). Scalable feature selection,

classification and signature generation for organizing large text databases into hierarchical

topic taxonomies. Journal of Very Large Data Bases, 7(3), 163–178.

Dumais, S. T., & Chen, H. (2000). Hierarchical classification of web content. In Proceedings of the 23rd

ACM International Conference on Research and Development in Information Retrieval

(SIGIR’00) (pp. 256–263). Athens, GR.

Esuli, A., Fagni, T., & Sebastiani, F. (2008). Boosting Multi-label Hierarchical Text Categorization.

Information Retrieval, 11(4):287-313.

Fagni, T. & Sebastiani, F. (2010). Selecting Negative Examples for Hierarchical Text Classification: An

Experimental Comparison. Journal of the American Society for Information Science and

Technologies, 61(11):2256-2265.

Forman, G. (2004). A pitfall and solution in multi-class feature selection for text classification. In Pro-

ceedings of the 21st International Conference on Machine Learning (ICML’04). Banff, CA.

Gaussier, E., Goutte, C., Popat, K., & Chen, F. (2002). A hierarchical model for clustering and

categorising documents. In Proceedings of the 24th European Colloquium on Information

Retrieval Research (ECIR’02) (pp. 229–247). Glasgow, UK.

Koller, D., & Sahami, M. (1997). Hierarchically classifying documents using very few words. In Pro-

ceedings of the 14th International Conference on Machine Learning (ICML’97) (pp. 170–178).

Nashville, US.

Liu, T. Y., Yang, Y., Wan, H., Zeng, H. J., Chen, Z., & Ma, W. Y. (2005). Support vector machines

classification with a very large-scale taxonomy. SIGKDD Explorations, 7(1), 36–43.

McCallum, A. K., Rosenfeld, R., Mitchell, T. M., Ng, A. Y. (1998). Improving text classification by

shrinkage in a hierarchy of classes. In Proceedings of the 15th International Conference on

Machine Learning (ICML’98) (pp. 359–367). Madison, US.

Ng, H. T., Goh, W. B., Low, K. L. (1997). Feature selection, perceptron learning, and a usability case

study for text categorization. In Proceedings of the 20th ACM International Conference on

Research and Development in Information Retrieval (SIGIR’97) (pp. 67–73). Philadelphia, US.

Ruiz, M., & Srinivasan, P. (2002). Hierarchical text classification using neural networks. Information

Retrieval, 5(1), 87–118.

Schapire, R. E., & Singer, Y. (2000). BOOSTEXTER: A boosting-based system for text categorization.

Machine Learning, 39(2/3), 135–168.

Toutanova, K., Chen, F., Popat, K., & Hofmann, T. (2001). Text classification in a hierarchical mixture

model for small training sets. In Proceedings of the 10th ACM International Conference on

Information and Knowledge Management (CIKM’01) (pp. 105–113). Atlanta, US.

Vinokourov, A., & Girolami, M. (2002). A probabilistic framework for the hierarchic organisation and

classification of document collections. Journal of Intelligent Information Systems, 18(2/3),

153–172.

Wiener, E. D., Pedersen, J. O., & Weigend, A. S. (1995). A neural network approach to topic spotting.

In Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval

(SDAIR’95) (pp. 317–332). Las Vegas, US.

 ASSETS Specification of Ingestion services Page 13 D2.1.1 v.1.0

Yang, Y., Zhang, J., & Kisiel, B. (2003). A scalability analysis of classifiers in text categorization. In

Proceedings of the 26th ACM International Conference on Research and Development in

Information Retrieval (SIGIR’03) (pp. 96–103). Toronto, CA.

 ASSETS Specification of Ingestion services Page 14 D2.1.1 v.1.0

2. Ingestion-related ASSETS Needs and Constraints

This section identifies the set of ingestion-related needs and constraints, by describing the

issues of Metadata Enrichment, Heterogeneity Reduction, Information Extraction and

Classification. This allows describing the rationale behind the decisions for the system and

its services, the models, the constraints and the features.

2.1 Metadata Enrichment, Heterogeneity Reduction, Information

Extraction and Classification

The ASSETS portal will act as an integration system acquiring information, i.e., metadata

content, from different entities (e.g. museums, libraries, archives, etc.) which are called with

the general term of Content Providers (CPs) located in different European countries. Since

different CPs organize their digital archives using different formats, the metadata gathered

within the ASSETS project will suffer from a great heterogeneity. In fact, the metadata

submitted by different CPs are expected to have the following characteristics:

• They will be expressed in different languages. Basically, ASSETS will process metadata

containing words and texts written in the most of the European languages.

• They will use different formats for the textual representation of many values, such as,

for example, the dates (e.g. dd-mm-yyyy or mm-dd-yyyy) or the dimensions of a physical

object (e.g. different units measurement) .

• They will be formatted according to different XML schemas (e.g., Dublin core-based or

entirely proprietary formats).

• They are likely to contain errors in the textual representations and descriptions. There

are several types of errors the metadata can suffer from. We report two example cases

that we plan to study. :

o Spelling errors. Authors can be easily misnamed if they do no have a well known

name in the annotator's native language. There might be spelling errors even if

the author's name (or other texts) does not change among languages. In one of

the first examples received (by DW), Mozart has been written as Mozzart.

o Aging-related errors and problems. The metadata datasets of cultural heritage

institutions have been produced over a long period of time by different

archivists. Without digital preservation actions, it is likely that different

archivists used (over a long period of time) different terms and ontologies for

annotating similar or related metadata records. Furthermore, metadata

annotated many years ago might refer to ontologies that are no longer used.

This last type of errors will be managed according to the guidelines coming

from WP2.3 Digital Preservation.

Such heterogeneity represents a major difficulty in offering a satisfactory user experience on

the ASSETS web site. In fact, if the metadata are ingested 'as they are', without any specific

processing, the users would not benefit from the richness of such a large archive of cultural

heritage digital object descriptions. The results returned for a specific query might not

include several interesting results (for example, an Italian-speaking user might not receive

the link to an Italian book whose metadata record is not expressed in Italian). The results

might as well contain irrelevant result due to false matches among different languages or

 ASSETS Specification of Ingestion services Page 15 D2.1.1 v.1.0

formats.

Figure 1 - The rationale of Ingestion Service

Europeana Foundation realised the need of integrating the tools that collectively cover the

ingestion functionality into a unique framework. In particular, the need for having a unified

ingestion workflow with a single access point was identified as a requirement for the Assets

Project. Since this is a joint collaboration, the extended description for the design of this

service will be provided within the Europeanalabs documentation.

Europeana metadata contains both structured and unstructured information. Structured

information is provided by those metadata fields that identify well-specified type of

information, e.g., "date", "creator", "language". Unstructured information is provided by

those metadata fields that act as containers of generic information, e.g., "description".

The aim of the knowledge extraction service is provide Europeana ingestion and enrichment

process with automatic information extraction functionalities that enable to extract relevant

structured information from unstructured metadata fields contained in Europeana records.

Finally, the aim of "Metadata classification" is to develop a service for the automated

classification of metadata records under a taxonomy of semantic categories.

The classification process consists of linking a record to zero, one, or several from a

(taxonomically organized) set of predefined categories (aka "classes", or "concepts", or

"codes"). The set of predefined categories is called the classification scheme. Classification is

thus akin to "populating" a taxonomy with instances of the concepts in the taxonomy.

Europeana records are provided by many different content provider, which may (i) not use

any classification schema for their data, (ii) use a very specific classification scheme custom

tailored for specific local purposes of the content provider, (iii) use a standard well-know

classification schema for their data, either general-purpose (e.g., Library of the Congress

 ASSETS Specification of Ingestion services Page 16 D2.1.1 v.1.0

Subject Headings, LCSH) or discipline-specific (e.g., Medical Subject Headings). Among these

three cases the last one is certainly the preferred one for Europeana.

The metadata classification service will enable Europeana to automatically classify the new

records provided by content providers, and those already acquired by Europeana, following

a set of general-purpose and/or discipline-specific classification schema.

The ultimate goal of the task is making the searching and browsing experience on the part of

the user more satisfactory; e.g.:

• user can navigate from record to concept and to other records belonging to same

concept or sibling concepts;

• user can restrict search to records belonging to a specific concept;

• user can ask to group the search results according to the concepts they belong to.

 ASSETS Specification of Ingestion services Page 17 D2.1.1 v.1.0

3. Ingestion-related ASSETS Services

This section allows the reader to understand the approach adopted by each ASSETS research

activity (often according to the state of the art and standards) for identifying the proposed

solution to the issues described in the previous section.

3.1 The Ingestion Services

Most of algorithms that will be experimented and implemented will be based on a Machine

Learning (ML) approach and, more in details, on supervised learning methods. In that

approach a learning machine induces a classifier by observing a set of metadata records that

have already been associated with one or more categories (such set is called training set).

In particular:

• for the Metadata Cleaning service, the training set should contain examples of typical

error with the correspondent corrections;

• for the Knowledge Extraction service, the training set should contain annotated

descriptions. Basically, the relevant entities (e.g. names of persons or places) should be

surrounded with specific tags;

• for the Metadata Classification service, the training set should contain metadata records

associated to the correct categories;

• the Ingestion team has already prepared XML schemas the CPs need to use in order to

provide training sets before the Europeana Data Model (EDM) is finalized. Once the

EDM has been finalized, the Ingestion team will modify the current XML schemas to take

into account the fresh common data format.

ML methods have already been proven to be very effective in knowledge extraction and

classification tasks. Even if some established algorithms will have to be tailored for the

specific needs of the ASSETS project, it is reasonable to expect very good results if enough

annotated metadata are provided by the CPs.

However, supervised ML algorithms are not the only methods that will be experimented in

the Ingestion module. Possible alternatives include unsupervised learning methods (that do

not require a training set) and non-adaptive methods for the simpler cases.

In general, we will limit the number of cases where a non-adaptive approach will be used. In

fact, even if in some cases a rule-based system would be quite effective and much simpler to

implement, it would not adapt to new datasets provided by CPs that decide to join ASSETS

(or Europeana).

The ASSETS proposal for the ingestion issues is to provide implementations of advanced

services with functionalities able to clean, enrich, extract knowledge, and classify the

metadata records coming from the CPs involved in the ASSETS project and the metadata

records currently indexed by Europeana.

The ASSETS ingestion services will:

• clean and perform a basic enrichment of the metadata (using URIs pointing to

controlled vocabularies and authority files) through the Metadata Cleaning service;

• extract knowledge and enrich the original metadata with the new information through

 ASSETS Specification of Ingestion services Page 18 D2.1.1 v.1.0

the Knowledge Extraction service;

• classify the metadata under a well-defined classification taxonomy through the

Metadata Classification service;

3.1.1 Metadata Cleaning

The service has the following set of goals:

1. correct part of the errors in the metadata;

2. normalize the values of specific fields by using the same textual representation in all

of the datasets received by the ASSETS project;

3. perform a basic enrichment of specific elements of the metadata records.

3.1.2 Knowledge Extraction

Usually the metadata records have one or more descriptive fields containing free-form,

unstructured textual description of a physical object. The second step Knowledge Extraction

will extract information by such long textual description. The type of extracted information

will depend on the metadata domain and cannot be specified at this moment.

3.1.3 Metadata Classification

Even after the cleaning and the extraction of knowledge have been accomplished, the

metadata remain a largely disorganized set. The ASSETS users might benefit from an

organization of the metadata under a well defined semantic taxonomy, like, for example,

the Library of Congress Classification scheme. The third step Metadata Classification will

associate each metadata record to one or more categories in classification schemes that are

yet to be chosen.

 ASSETS Specification of Ingestion services Page 19 D2.1.1 v.1.0

Figure 2 – The ASSETS Ingestion Services

For further details on how CPs have to format their data in order to submit training data to

the enrichment services of WP2.1 see Appendix 1 - Enrichment Services Training Data

Format.

The ASSETS proposal for the ingestion issues is to provide implementations of advanced

services with functionalities able to clean, enrich, extract knowledge, and classify the

metadata records coming from the CPs involved in the ASSETS project and the metadata

records currently indexed by Europeana.

The ASSETS ingestion services will:

• clean and perform a basic enrichment of the metadata (using URIs pointing to

controlled vocabularies and authority files) through the Metadata Cleaning service.

• extract knowledge and enrich the original metadata with the new information through

the Knowledge Extraction service.

• classify the metadata under a well-defined classification taxonomy through the

Metadata Classification service

3.1.4 Ingestion Workflow

The Europeana web portal implements a search engine over the European cultural heritage.

In order to provide this functionality, an index with the description of the masterpieces was

created. This information is retrieved from the Content Providers (CPs). The model used for

metadata aggregation is sketched in the following figure.

 ASSETS Specification of Ingestion services Page 20 D2.1.1 v.1.0

Figure 3 – Aggregators in the Europeana organisation model

Where the aggregators are organizations which integrate the data retrieved from content

providers, and transform it into a representation compatible with the Europeana search

index. See also Europeana Aggregator's Handbook [6].

The harvesting of the metadata is based on the Open Archives Initiative Protocol for

Metadata Harvesting (for further details see http://www.openarchives.org/pmh). This

protocol standardises the harvesting of metadata by defining a web service interface which

provides descriptions of the collection objects in XML format.

Figure 4 - OAI-PMH Harvesting

These XML files, retrieved through the OAI-PMH interface, are used as input for the

ingestion workflow.

The ASSETS proposal for the ingestion workflow management will:

• Integrate execution of the metadata enrichment services in a standardized workflow -

Ingestion Workflow Management;

• Build the multimedia index used for content based search functionality - Post-Ingestion

Processing;

The ingestion framework will perform the necessary processing steps as much as possible in

an autonomous way. The ingestion team is involved in the scheduling process, where the

team needs/can prioritise certain collections or inform the system about a new collection

which needs to be processed. After processing, the records remain in the acceptance point

until a member of the ingestion team confirms them.

 ASSETS Specification of Ingestion services Page 21 D2.1.1 v.1.0

Figure 5 - The Ingestion Process flow

 ASSETS Specification of Ingestion services Page 22 D2.1.1 v.1.0

4. The ASSETS Data Models and Interfaces for

Ingestion Services

The information available from the above sections allows us to depict the context and the

application scenarios for the ASSETS services, and consequently, this allows us to identify

concepts which are presented below. These concepts are modelled as UML diagrams which

emphasize the relationships between and the properties of objects, which represent the

ASSETS Data Models.

The first part of this section introduces the Common Data Model, and afterwards it and

describes the specific Data Models for Ingestion Services.

We have adopted the following table templates to identify important aspects of each

service such as: the interfaces, the dependencies, the responsibilities, the key concepts

managed and the operations supported.

Service Name The name of the service

Responsibility List of items for the responsibility of the service

Provided

Interfaces

List of the interfaces through whom the service provides its features and

manages key concepts

Dependencies List of dependencies with other ASSETS services, if any. If this information

is not available, provides the expected key concepts which represent

inputs for the service from other ASSETS services

Interface Name The name of the service interface

Key Concepts Identification of the key concepts (data model) managed by the interface

Operations List of Item for the operations of the interface

It is important to remark that ASSETS project is adopting an iterative and incremental

development process. For that reason, the interfaces and models presented here are a

picture of the current development phase, that will evolve as the development of services

proceeds toward the release of the prototypes, which are expected by the month 16 of the

project.

4.1 System Architecture Overview

Differently from Europeana project, which stores exclusively the items’ metadata within its

database, the ASSETS services will need to index and store multimedia content, too.

Moreover, the “Video summarisation, adaptation, indexing and retrieval” service will

generate video summaries which need to be made available to the end user. These

requirements enforce the enhancement of ASSETS architecture with the usage of

heavyweight-technologies, in comparison to Europeana architecture.

Anyway, one of our project goals is to implement high quality services and to integrate as

 ASSETS Specification of Ingestion services Page 23 D2.1.1 v.1.0

many as possible into the Europeana portal. Therefore, the ASSETS architecture needs to

follow as long as possible the Europeana architecture, technologies and implementation

guidelines.

The proposed system architecture is sketched in the following figure.

Figure 6 – Overview of the ASSETS System Architecture

The dashed line marks the border of the ASSETS system and its external interfaces. The

named arrows represent the dataflows exchanged between the ASSETS system components

(internally or with the outer world).

The assets services needs to communicate with:

• Content Providers Portal: which need to provide on OAI-PMH interface for metadata

harvesting and an URL for content harvesting;

• Europeana Backend: which will be accessed through its Web API for updating the

Europeana metamodel and metadata with the one created by ASSETS services;

• End Users: access the ASSETS search and browsing services from their browser.

4.1.1 System Components

The Assets internal architecture is composed from 3 main components.

 First of them has the role of collecting the metadata information and the content from the

content providers and submitting it for storage into the Assets&Europeana databases

(Ingestion Management).

The second one implements the business functionality (Assets Backend) and makes it

available on Internet through a Web API.

The third component implements the Graphical User Interface (Assets Frontend) which

offers a rich set of browsing and searching functionality for end users.

The rest of the section will describe the Ingestion Management components, and the

Common components on which they rely.

 ASSETS Specification of Ingestion services Page 24 D2.1.1 v.1.0

4.2 Common Models and Interfaces

The common components were designed for implementing the basic functionality that is

common for all Assets services. This functionality includes the access to the information

stored into the Europeana database and Solr index, the unified concept for application

configuration, the common data-model used by Assets components, the ORM framework

for data storage based on MongoDb.

The Assets common architecture layer is implemented in 5 components: Assets data-model,

Assets common-api, Assets common-server-api, Assets common-server, Assets common-

client.

Figure 7 - Abstract Factory Implementation

 ASSETS Specification of Ingestion services Page 25 D2.1.1 v.1.0

4.2.1 ASSETS Data-Model Component

The main goal of the common data-model is to offer a common representation for the

information exchanged between Assets services. The component implements an

AbstractFactory pattern for the instantiation of the domain objects.

4.2.2 Core Data Model

Assets common application layer offers access to the information managed by the

Europeana application. This information is organized in collections provided by individual

content providers (EuropeanaCollection objects), and the metadata containing the

descriptions of the pasterpieces (FullDoc objects). Each object in the collection is identified

by a set of properties which are grouped in EuropeanaId objects. In order to be able to

expose these objects over the Rest interface, the Assets adapter classes enhance the core

application objects by adding JAXB serialization annotations (EuropeanaCollectionAdapter,

EuropeanaIdAdapter, FullDocAdapter). The metadata descriptions are stored into the Solr

index for providing fast search and access in the Europeana Portal. Assets needs to process

and persist these objects in a database, therefore the AssetsFullDoc representation of the

objects was created. All Assets domain objects need to implement a common interface:

AssetsDomainObject. The other objects of the Assets domain model are presented together

with the components which are responsible for their management.

Interface

Name

AssetsAbstractFactory

Key Concepts Domain object, component factory

Operations • public AssetsDomainObject createDomainObject(String

componentName, String domainObjectName) - This method is used

for the instantiation of the given domain objects from the given

component

Interface

Name

ComponentFactory

Key Concepts Instantiation of current component domain objects

Operations • public AssetsDomainObject createDomainObject(String

domainObjectName) - This method creates an instance of the domain

object identified by the given domain object name.

Interface

Name

AssetsDomainObject

Key Concepts Field enumeration

Operations • public String getId() - Retrieve the identifier of the object stored in

database

• public String getDomainObjectName() - This method returns the logical

 ASSETS Specification of Ingestion services Page 26 D2.1.1 v.1.0

name of the current domain object. By default, the simple classname

will be used to as object name.

• public String getComponentName() - This method returns the name of

the component to which the current domain object belongs.

• public FieldDefEnum getFieldsEnum() - This method returns the list

with the name of the attributes which hold the information related to

the current domain object.

 ASSETS Specification of Ingestion services Page 27 D2.1.1 v.1.0

Figure 8 - Core data models

4.2.3 ASSETS Common API and Common Server API Components

The API components implement functionality that is common and should be reused by all

Assets Services. There is functionality which is independent from the location at which it is

used. For example, the reading of the configuration files, conversion between different

textual representations of date information can be used without any restrictions in server-

side and client-side components. This functionality is implemented in the “common-api”

component.

Further more, there is functionality which needs to access restricted or protected resources,

like the persistence system. This functionality is made available only for being accessed on

the server; therefore, it resides in the “common-api-server” component. In the current

version of the system, this component implements a generic implementation of the

MongoDb based DataStore and the logging for the media indexing functionality. Further

common functionality will be identified during the implementation of the Assets services.

Service Name Common Server API

Responsibility 1. Generic data Store

2. Logging support for media indexing

Provided

Interfaces

1. DataStoreDao

2. MediaIndexingLogService

Dependencies Common data model

Interface Name DataStoreDao

Key Concepts AssetsDomainObject

Operations • public AssetsDomainObject storeObject(AssetsDomainObject

object) - Stores the given domain object into the database

• public AssetsDomainObject retrieveObject(AssetsDomainObject

object) - Reads the object identified by the given object id from the

database

• public AssetsDomainObject

retrieveObjectByField(AssetsDomainObject object, String

fieldName) - Reads the object identified by the passed field from

the database

• public AssetsDomainObject updateObject(AssetsDomainObject

object) - Updates the object identified by the given object id from

the database

• public void removeObject(AssetsDomainObject object) - This

method removes the given object from the database

• public boolean isDbRunning() - This utility method checks if the

 ASSETS Specification of Ingestion services Page 28 D2.1.1 v.1.0

database connection can be established

Interface Name MediaIndexingLogService

Key Concepts AssetsDomainObject

Operations • public Map<String, String> getIndexedMediaIds(List<String>

europeanaUris) - This method evaluates the indexing log for media

objects and returns a map of EuropeanaId.ids which are already

available in the media index.

• public Map<String, String> getIndexedMediaIds(List<String>

europeanaUris, int type) - This method evaluates the indexing log

for media objects and returns a map of EuropeanaId.ids which are

already available in the media index.

• public AssetsMediaIndexingLog getMediaIndexingLog(Long

europeanaId) - This method returns the AssetsMediaIndexingLog

for the given EuropeanaID.id

• public AssetsMediaIndexingLog

storeMediaIndexingLog(AssetsMediaIndexingLog

mediaIndexingLog) - This method stores the

AssetsMediaIndexingLog data representation in database. If the

object already exists in the database it will be overriden with the

current database.

• public AssetsMediaIndexingLog

updateOrCreateImageIndexingLog(Long europeanaId, String

europeanaUri, Date imageIndexingDate) - This method updates the

image indexing date for the object identified by the given

europeanaId.

 ASSETS Specification of Ingestion services Page 29 D2.1.1 v.1.0

Figure 9 – Common Server API

 ASSETS Specification of Ingestion services Page 30 D2.1.1 v.1.0

4.2.4 Common Server and Common Client

The common layer of Assets architecture follows the same structure as the regular

components. This layer is also provided with a REST and a client API, which makes available

the core information of the assets system to the other components. The business

functionality provided in the Server, Rest and Client interfaces is the same; therefore we will

describe in the followings only the Server interface which is the most important one.

Service Name Metadata Management Service

Responsibility 1. Define a unified representation for the assets domain model

2. Instantiate domain objects

Provided

Interfaces

1. MetadataManagementService,

2. CommonRest,

3. DataManagement

Dependencies Europeana Core Data – Model

Interface Name MetadataManagementService

Key Concepts Collection, CollectionObject, Metadata

Operations • public Integer getCollectionCount() - This method returns the

number of collections available into the database

• public EuropeanaCollection getCollection(Long id) - This method

returns the collection identified by the given id

• public List<EuropeanaCollection> getCollections() – Fetch all

collections.

• public List<EuropeanaId>

getCollectionObjects(EuropeanaCollection collection) - The list of

Europeana ids available in the collection

• public EuropeanaId getCollectionObject(Long id) - This method

returns the EuropeanaId object identified by the given database id

• public FullDoc getMetadataFromSolr(EuropeanaId euId) - This

method retrieves the metadata of the collection object from the

SolrIndex

• public AssetsFullDoc getMetadata(Long euId) - This method

retrieves the metadata of the collection object from the database

• public AssetsFullDoc storeMetadata(AssetsFullDoc afd) - This

method stores the FullDoc metadata representation in database. If

the object already exists in the database it will be overriden with the

current database.

• public Long getCollectionObjectId(String europeanaUri) - This

method retrieves the ID of the EuropeanaId object identified by the

given URI

 ASSETS Specification of Ingestion services Page 31 D2.1.1 v.1.0

 ASSETS Specification of Ingestion services Page 32 D2.1.1 v.1.0

Figure 10 - Metadata Management service

 ASSETS Specification of Ingestion services Page 33 D2.1.1 v.1.0

4.3 The Ingestion Models and Interfaces

4.3.1 The Metadata Cleaning Service Models and Interfaces

The metadata cleaning service has the responsibility of managing and performing basic error

correction, normalization and cleaning tasks.

Service Name Metadata Cleaning Service

Responsibility 1. Basic error correction

2. Value normalization

3. Basic enrichment.

Provided

Interfaces

1. MetadataCleaningManager

2. MetadataErrorCorrection

3. MetadataValueNormalization

4. MetadataFieldEnrichment

Dependencies ASSETS common, other modules and services used during the ingestion

stage

The manager interfaces allows to query the service for the available

correction/normalization models and resources (e.g., authority files and controlled

vocabularies), and to train new models by providing training examples.

Interface Name MetadataCleaningManager

Key Concepts MetadataErrorCorrection, MetadataValueNormalization,

MetadataFieldEnrichment

Operations • TrainMetadataErrorCorrector – trains an error correction model

from a training set of example composed of pair of metadata

records describing the metadata record before and after the

correction.

• TrainMetadataValueNormalizer – trains a value normalization model

from a training set of example composed of pair of metadata

records describing the metadata record before and after the value

normalization.

• GetStatus – polls the service to obtain the status of a training

process.

• ListMetadataErrorCorrectors - returns a list of the available models

trained to perform error correction.

• DeleteMetadataErrorCorrector – deletes an error correction model

• ListMetadataValueNormalizers - returns a list of the available

 ASSETS Specification of Ingestion services Page 34 D2.1.1 v.1.0

models trained to perform value normalization

• DeleteMetadataValueNormalizer – deletes an error value

normalization model

• ListAuthorityFiles - lists the available authority files

• ListControlledVocabularies - lists the available controlled

vocabularies

The following three interfaces provide the actual methods to process the metadata records

during the ingestion process.

Interface Name MetadataErrorCorrection

Key Concepts MetadataErrorCorrectionDescriptor

Operations • CorrectRecord – takes in input a record and the name of an error

correction model, returns an automatically corrected metadata

record according to the correction model

Interface Name MetadataValueNormalization

Key Concepts MetadataValueNormalizerDescriptor

Operations • NormalizeRecord - takes in input a record and the name of a value

normalization model, returns an automatically normalized metadata

record according to the normalization model

Interface Name MetadataFieldEnrichment

Key Concepts MetadataFieldEnricherDescriptor

Operations • EnrichMetadataWithAuthorityFile - takes in input a record and the

name of an authority file, returns an automatically enriched record

according to the authorithy file

• enrichMetadataWithControlledVocabulary - takes in input a record

and the name of a controlled vocabulary, returns an automatically

enriched record according to the controlled vocabulary

 ASSETS Specification of Ingestion services Page 35 D2.1.1 v.1.0

Figure 11 - Ingestion Cleaning API: Overview

 ASSETS Specification of Ingestion services Page 36 D2.1.1 v.1.0

Figure 12 – Ingestion Cleaning API: details

 ASSETS Specification of Ingestion services Page 37 D2.1.1 v.1.0

Figure 13 – Ingestion Cleaning : Client Side Models

 ASSETS Specification of Ingestion services Page 38 D2.1.1 v.1.0

4.3.2 Knowledge Extraction Models and Interfaces

The Knowledge Extraction service has the responsibility of managing and performing

extraction of structured information from pieces of unstructured text contained in metadata

records.

Service Name Knowledge Extraction

Responsibility 1. Extraction of structured information from unstructured textual

metadata fields of metadata records

Provided

Interfaces

1. KnowedgeExtractionTrainer,

2. KnowledgeExtractionManager,

3. KnowledgeExtractor

Dependencies ASSETS common, other modules and services used during the ingestion

stage

The KnowledgeExtractionTrainer interface provides the backend with methods for the

creation of knowledge extraction models, while the KnowedgeExtractionManager interface

provides the ingestion workflow with methods to access them.

Interface Name KnowledgeExtractionTrainer

Key Concepts MetadataKnowedgeExtractionTrainingSet,

MetadataKnowledgeExtractionModel

Operations • TrainMetadataKnowledgeExtractor - trains a knowledge extraction

model from a training set of examples consisting of a list of

metadata records in which the relevant information to be extracted

has been manually annotated.

• GetTrainingStatus - polls the service to obtain the status of a

training process.

Interface Name KnowedgeExtractionManager

Key Concepts MetadataKnowledgeExtractionModel, KnowledgeExtractorDescriptor,

KnowledgeExtractor

Operations • ListMetadataKnowledgeExtractor – returns a list of the available

knowledge extraction models.

• DeleteMetadataKnowledgeExtractor – deletes a knowledge

extraction model.

• GetKnowledgeExtractorDescriptor – load and returns a knowledge

extraction model.

Interface Name KnowledgeExtractor

Key Concepts MetadataDataset, MetadataKnoledgeExtractionModel

 ASSETS Specification of Ingestion services Page 39 D2.1.1 v.1.0

Operations • ExtractKnowledgeFromMetadata – applies a knowledge extraction

model to a metadata record, returns a new version of it with

additional information generated by the automatic knowledge

extraction process.

Figure 14 – Ingestion Knowledge Extraction Data Model

Figure 15 - Ingestion Knowledge Extraction API

Figure 16 - Ingestion Knowledge Extraction REST API

 ASSETS Specification of Ingestion services Page 40 D2.1.1 v.1.0

Figure 17 - Ingestion Knowledge Extraction Client

 ASSETS Specification of Ingestion services Page 41 D2.1.1 v.1.0

4.3.3 Metadata Classification Models and Interfaces

The Metadata Classification service has the responsibility of managing and performing

classification metadata records with respect to a relevant taxonomy.

Service Name Metadata Classification

Responsibility 1. Classification of europeana metadata records on relevant

taxonomies

Provided

Interfaces

1. ClassificationTrainer,

2. ClassificationManager,

3. ClassificationService

Dependencies ASSETS common, other modules and services used during the ingestion

stage

The ClassificationTrainer interface provides the backend with methods for the creation of

classification models, while the ClassificationManager interface provides the ingestion

workflow with methods to access them.

Interface Name ClassificationTrainer

Key Concepts MetadataClassificationTrainingSet, MetadataClassificationModel

Operations • TrainMetadataClassifier - trains a classification model from a

training set of examples consisting of a specification of a taxonomy

and a list of metadata records each one manually classified with

respect to such taxonomy.

• GetTrainingStatus - polls the service to obtain the status of a

training process.

Interface Name ClassificationManager, ClassificationService

Key Concepts MetadataClassificationModel

Operations • ListMetadataClassifier – returns a list of the available classification

models.

• DeleteMetadataClassifier - deletes a classification model.

• GetClassificationService – load and returns a classification model.

Interface Name ClassificationService

Key Concepts MetadataDataset, MetadataClassificationModel

Operations • ClassifyMetadata – applies a classification model to a metadata

record, returns a new version of it with additional information

specifying the taxonomy labels assigned by the automatic

 ASSETS Specification of Ingestion services Page 42 D2.1.1 v.1.0

classification process.

Figure 18 – Ingestion Metadata Classification Service API

Figure 19 - Ingestion Metadata Classification REST API

 ASSETS Specification of Ingestion services Page 43 D2.1.1 v.1.0

Figure 20 - Ingestion Metadata Classification Client Model

 ASSETS Specification of Ingestion services Page 44 D2.1.1 v.1.0

4.3.4 Ingestion Workflow Models and Interfaces

Concept Definitions

• configuration time: execution phase during which the plugins are configured. In OSGi

this corresponds to the registration phase, during which validity checks are performed

by the system.

• processing time: execution phase during which the MetaDataRecords are being

processed

Workflows

A number of predefined workflows will be provided which cover the standard steps for

processing and ingesting collections in Europeana platform. These workflows can be

adapted and tweaked by technical staff for certain collections. The ingestion team needs to

assign a workflow to the collection before it is going to be processed.

Figure 21 – Ingestion Workflows

Processing Model

Due to the necessity of optimal resource usage, each process part is asynchronous executed

within a thread pool. A plugin must make explicit if it is not thread safe - in which case the

framework ensures that no more than one thread at a time uses the plugin. To uncouple

each processing block from each other a FIFO queue will be provided. The input queue will

thereby be filled by the framework controller to ensure, that the framework is in control of

all load-balancing issues

The ingestion workflow management is developed as a joint effort with Europeana and The

European Library. It provides a framework for a scalable and robust execution of the

ingestion of large quantities of meta-data records and allows specialized processing by using

a plugin based mechanism.

 ASSETS Specification of Ingestion services Page 45 D2.1.1 v.1.0

Figure 22- Workflow Execution Model

 ASSETS Specification of Ingestion services Page 46 D2.1.1 v.1.0

Service Name Unified Ingestion Manager

Responsibility 1. definition of ingestion workflows;

2. workflow execution orchestration;

3. reporting

Provided

Interfaces

1. Workflow,

2. MetaDataRecord,

3. IngestionPlugin,

4. SavePoint,

5. Execution,

6. Orchestrator

Dependencies Apache Karaf OSGi implementation

Interface

Name

Workflow

Key Concepts Representation of a workflow, composed of multiple WorkflowSteps.

Operations • String getName() - name of the workflow, should be reasonable

meaningful

• String getDescription() - description of this specific workflow (what does

it perform, what should be the outcome, etc.)

• WorkflowStart getStart() - defined start point of work flow

• List<IngestionPlugin> getSteps() - plugins as steps in this workflow

• boolean isSavepoint(String pluginName) - Is this a save point plugin?

• boolean isMandatory(String pluginName) - Is this a mandatory plugin,

so unsuccesful processing is a failure?

Interface

Name

IngestionPlugin

Key Concepts Definition of a plugin that processes meta-data records. Services that

provide ingestion-time capabilities need to implement this interface. An

ingestion plugin is a single processing step within a workflow

Operations • String getName() - Get the class name of the plugin which is used to

register the plugin with the registry.

• String getDescription() -Get the description of the plugin which is

provided to the operators when starting analyzing workflows.

• TKey<?, ?> getInputFields() - Get the list of fields this plugin wants to

operate on. This is used for information purposes, so that it can be

validated if the records hold these data.

• TKey<?, ?> getOptionalFields() - Get the list of fields this plugin would

 ASSETS Specification of Ingestion services Page 47 D2.1.1 v.1.0

like to operate on or can get additional information for the working

process. This is used for information purposes, so that it can be

validated if the records hold these data.

• TKey<?, ?> getOutputFields() - Get the list of output fields. @return a

list of fields this plugin creates

• void initialize() - Initialize the plugin when it is loaded in the OSGI

container and attached to the uim registry.

• void shutdown() - Shutdown the plugin when it is removed from the

uim registry (due to OSGI shutdown or reinstallation etc.

• List<String> getParameters() - List of configuration parameters this

plugin can take from the execution context to be configured for a

specific execution.

• int getPreferredThreadCount() - A plugin is always executed within a

thread pool, this parameter defines the preferred size of the pool.

Plugins should know best, what's a good level of parallelism.

• int getMaximumThreadCount() - Number of maximum threads. The

plugin might specify here one (1) if it is not thread safe.

• void initialize(ExecutionContext context) throws

IngestionPluginFailedException - Initialization method for an execution

context. The context holds the properties specific for this execution.

• void completed(ExecutionContext context) throws

IngestionPluginFailedException - Finalization method (tear down) for an

execution. At the end of each execution this method is called to allow

the plugin to clean up memory or external resources.

• boolean processRecord(MetaDataRecord mdr, ExecutionContext

context) throws IngestionPluginFailedException,

CorruptedMetadataRecordException - Process a single meta data

record within a given execution context. It returns true, if processing

went well and false, if something failed.

Interface

Name

ActiveExecution

Key Concepts Type-safe representation of a meta-data record

Operations • getId

• addField

• addQField

• setField

• setQField

Interface

Name

Execution

 ASSETS Specification of Ingestion services Page 48 D2.1.1 v.1.0

Key Concepts An Execution in a running state. It keeps track of the overall progress.

Operations • StorageEngine getStorageEngine()

• public void setPaused(boolean paused);

• boolean isPaused();

• boolean isFinished() - test the execution if all tasks are done eather

completly finished or failed. so if true: scheduled == finished + failed

• void setThrowable(Throwable throwable);

• Throwable getThrowable();

• Queue<T> getSuccess(String name);

• Queue<T> getFailure(String name);

• Set<Task> getAssigned(String name);

• void incrementCompleted(int count); int getProgressSize(); - gives an

estimate of tasks/records which are currently in the pipeline. Note that

failed tasks are not counted. The system can not guarantee the number

of records, due to the problem that some of the tasks might change

their status during the time of counting.

• int getCompletedSize(); - gives the number of tasks/records which are

completly finished successful by all steps.

• int getFailureSize() - gives the number of tasks/records which have

failed on the way through the workflow no matter where.

• int getScheduledSize() - gives the number of tasks/records which have

been scheduled to be processed in the first place. So scheduled =

progress + finished + failure.

• int getTotalSize() - gives the number of records which this execution will

need to deal with. If not possible to estimate Integer.MAX_VALUE is

given.

• List<WorkflowStepStatus> getStepStatus();

• WorkflowStepStatus getStepStatus(IngestionPlugin step);

• public Properties getProperties();

• void waitUntilFinished();

• void incrementScheduled(int work);

Interface

Name

Orchestrator

Key Concepts Workflow execution orchestration

Operations • public String getIdentifier();

• ActiveExecution<?> executeWorkflow(Workflow w, DataSet dataset);

• ActiveExecution<?> executeWorkflow(Workflow w, DataSet dataset,

 ASSETS Specification of Ingestion services Page 49 D2.1.1 v.1.0

Properties properties);

• <T> ActiveExecution<T> getActiveExecution(long id);

• <T> java.util.Collection<ActiveExecution<T>> getActiveExecutions();

• void shutdown();

4.3.5 Post-Ingestion Processing

Service Name Post-Ingestion Processing

Responsibility 1. multimedia content harvesting,

2. multimedia content indexing

Provided

Interfaces

1. MultimediaContentHarvesting,

2. MultimediaContentIndexing

Dependencies Assets Common, Europeana Core, Text Indexing, Image Indexing, Audio

Indexing, 3D Indexing

Interface

Name

MultimediaContentHarvesting

Key Concepts MultimediaContent

MultimediaContentUrl

ObjectMetadata (FullDoc/ESE/EDM)

Operations • downloadMultimediaContent

Interface

Name

MultimediaIndexing

Key Concepts Multimedia Index, MultimediaContent

Operations • startIndexing,

• saveIndexedRecord,

• getIndexQueueSize

Extends • Core-Indexing

 ASSETS Specification of Ingestion services Page 50 D2.1.1 v.1.0

Figure 23 – Ingestion Workflow API model

References

1. ASSETS D2.0.1 "Requirements Specification" – Internal Document

2. ASSETS MS12 "System Architecture" – Internal Document

3. ASSETS MS27 "Digital Preservation Service Design"– Internal Document

4. Roy Thomas Fielding "Architectural Styles and the Design of Network-based

Software Architectures", 2000 – available at

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf

5. H. Belhaj-Frej, P. Rigaux, N. Spyratos “User notification in taxonomy based digital

libraries”, SIGDOC '06 Proceedings of the 24th annual ACM international

conference on Design of communication. Available at

http://portal.acm.org/citation.cfm?id=1166366

6. Europeana Aggregator's Handbook - available at

http://www.version1.europeana.eu/c/document_library/get_file?uuid=94bcddbf-

3625-4e6d-8135-c7375d6bbc62&groupId=10602

7. ASSETS D2.0.2 “Interface Specifications and System Design” – Internal Document

8. ASSETS D2.0.4 “The ASSETS APIs”

 ASSETS Specification of Ingestion services Page 51 D2.1.1 v.1.0

Appendix 1 - Enrichment Services Training Data Format

This page2 provides information on how CPs have to format their data in order to submit

training data to the enrichment services of WP2.1:

• Metadata cleaning

• Knowledge extraction

• Metatada classification

The training data file format is XML. For each task an XML schema file, i.e,. an XSD file, is

provided. CPs should use the schema for each task to produce their training data files (one

file for each task).

In order to simplify the process we also provide an XML example file for each task and a

document with guidelines and comments. CPs could follow the guidelines and use the

examples as a starting point to produce their training data files.

The ASSETS wiki folder "Enrichment Services Training Data Guidelines" contains both the

guidelines for the content providers and the xsd/xml files that are to be used in preparing

the training sets. More in details, that folder contains the following files:

• cleaningSchema.xsd.txt: XML Schema Definition for providing training sets to task T2.1.1

"Metadata Cleaning". The file extension is txt because the wiki does not allow the

upload of xsd files. The file should be renamed by removing the extension .txt.

• cleaningExample.xml: example of a well-formed training set for task T2.1.1. The content

providers may modify this file for providing their training data.

• extractionSchema.xsd.txt: XML Schema Definition for providing training sets to task

T2.1.2 "Knowledge Extraction". The file extension is txt because the wiki does not allow

the upload of xsd files. The file should be renamed by removing the extension .txt.

• extractionExample.xml: example of a well-formed training set for task T2.1.2. The

content providers may modify this file for providing their training data.

• classificationSchema.xsd.txt: XML Schema Definition for providing training sets to task

T2.1.3 "Metadata Classification". The file extension is txt because the wiki does not

allow the upload of xsd files. The file should be renamed by removing the extension .txt.

• classificationExample.xml: example of a well-formed training set for task T2.1.3. The

content providers may modify this file for providing their training data.

• T2.1_TrainingGuidelines.pdf: pdf document presenting and discussing the xml/xsd files

above.

• T2.1_Training.tgz": tgz pack containing all of the previous files (with the correct file

extension).

All of the previous files are available on the ASSETS wiki at the following URL:

http://www.assets4europeana.eu/web/portal/documents?p_p_id=20&folderId=35495

2 http://www.assets4europeana.eu/web/portal/wiki/-

/wiki/Main/Enrichment%20Services%20Training%20Data%20Format

